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A perturbed version of the complex Toda chain �CTC� has been employed to describe adiabatic interactions
within an N-soliton train of the nonlinear Schrödinger equation. Perturbations induced by weak quadratic and
periodic external potentials are studied by both analytical and numerical means. It is found that the perturbed
CTC adequately models the N-soliton train dynamics for both types of potentials. As an application of the
developed theory, we consider the dynamics of a train of matter-wave solitons confined to a parabolic trap and
optical lattice, as well as tilted periodic potentials. In the last case, we demonstrate that there exist critical
values of the strength of the linear potential for which one or more localized states can be extracted from a
soliton train. An analytical expression for these critical strengths for expulsion is also derived.
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I. INTRODUCTION

One of the most remarkable phenomena occurring in non-
linear systems is the possibility to form localized states of a
soliton type as a result of the interplay between dispersion
and nonlinearity. These states display interesting properties
in response to external fields and their interactions have been
the subject of continuous interest since the creation of the
soliton theory. Besides the motivation from the viewpoint of
fundamental physics, studies on soliton interactions are very
important for applications such as optical fiber communica-
tions systems, where optical solitons are used as information
bit carriers �1�. In this context, the interaction between neigh-
boring solitons in a train limits the transmission capacity of
the communication system, so that soliton interaction be-
comes very important for optimal information packing and
transmission rates design. Trains of solitons �fluxons� in in-
teraction play an important role also in long Josephson junc-
tions where their dynamics, induced by external magnetic
fields, is used to construct flux-flow oscillators of interest for
applications in superconducting mm and sub-mm wave elec-
tronics �2�. Other rapidly developing fields in which interact-
ing solitons play a crucial role are photonic crystals �3� and
Bose-Einstein condensates �BEC� �4�.

Recently, BEC solitons have attracted a great deal of in-
terest both from the theoretical and the experimental point of
view �see, e.g., Ref. �5��. In particular, self-trapped states
capable of propagating in space without distortion are of
interest for pulsed atomic soliton lasers, atomic nanolitogra-
phy, and high-precision interferometry �6�, and the transport
of BEC solitons in the presence of external potentials, serv-

ing as magnetic and optical traps and waveguides, may be-
come important in future technologies.

The aim of the present paper is to study the adiabatic
dynamics of a train of N interacting solitons of the nonlinear
Schrödinger equation �NLS� in weak external potentials. As
a physical model, we consider matter-wave solitons in quasi-
one-dimensional BEC with attractive interactions between
atoms, such as 7Li, 87Rb, or 137Cs. The results, however, are
of interest also for nonlinear optics and for photonic crystals.
In particular, we study the N-soliton dynamics in parabolic,
linear, and periodic potentials, modeling the NLS train soli-
ton interaction in terms of a complex Toda chain �CTC�
which is valid in the adiabatic approximation. This model
has been successfully used in previous papers �see Refs.
�7–12�� and will be used here to continue the analysis in
�13,14� on the perturbed CTC �PCTC� as a model for
N-soliton interaction in BEC with quadratic and periodic po-
tentials. Our results provide an additional confirmation of the
stabilization properties of the periodic potentials observed in
�15,16� in a different physical setup. In particular, for the
case of an N-soliton train trapped in a weak parabolic trap,
we find that the train performs contracting and expanding
oscillations if its center of mass coincides with the minimum
of the potential, while it oscillates around the minimum of
the potential as a whole if its center of mass is shifted from
the minimum. In the last case, contracting and expanding
motions of the soliton train are superimposed to the center of
mass dynamics. As the strength of the parabolic trap in-
creases, we find from numerical simulations that the
N-soliton dynamics becomes more complicated with the
merging �splitting� of individual solitons when the train is
contracted �expanded� during its oscillating motion in the
trap. This behavior resemble the phenomenon of “missing
solitons” observed in the experiment �17�.

We have investigated the case of a tilted periodic poten-
tials, i.e., a potential which is the superposition of periodic
and linear potentials. The effect of the linear potential, if it is
strong enough, is that it can overcome the stabilization effect
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of the periodic potential. As a result, we show that there exist
critical values of the strength of the linear potential for which
one or more localized states can be extracted from a soliton
train �array�. We find that the critical strength for expulsion
changes with the number of the solitons in the train. In this
regard we have derived an analytical expression for the po-
tential critical strengths at which expulsion is achieved by
means of a Hamiltonian approach for the PCTC. From this
comparison, we find that the analysis based on the PCTC
provides a good description for the expulsion phenomena.

We remark that since the critical value of the potential
strength is an indirect measure of the binding energy of an
N-solitons train, one could use BEC soliton arrays in accel-
erated optical lattices to measure N-solitons matter-wave
binding energies. One could indeed reproduce the effect of
the linear potential by means of accelerated optical lattices
and measuring the critical acceleration at which the expul-
sion of one soliton from the array occurs. We hope experi-
ments in this direction will be performed soon.

The paper is organized as follows. In Sec. II we introduce
the mean field Gross-Pitaevskii equation �GPE� appropriate
for quasi-one-dimensional BEC in external potentials and
discuss the N-soliton interaction in terms of the complex
Toda chain. In Sec. III we study the perturbed nonlinear
Schrödinger equation and the perturbed CTC equation in the
adiabatic approximation for different types of external poten-
tials: quadratic, linear, and periodic. The analysis of the
N-soliton dynamics obtained from the perturbed CTC with
the above potentials is compared with direct numerical GPE
simulations in Sec. IV. In Sec. V we introduce a Hamiltonian
formulation of the PCTC and derive an analytical expression
for the critical strengths of the linear potential for which the
phenomenon of soliton expulsion occurs. Finally, in the last
section the main results of the paper are briefly summarized.

II. MODEL EQUATIONS AND N-SOLITON
INTERACTION

The dynamics of a condensate in the mean field approxi-
mation at zero temperature is governed by the 3D nonlinear
Schrödinger equation �in the BEC context called also as
Gross-Pitaevskii equation �GPE��

i �
��

�t
= �−

�2

2m
�2 + V�x,y,z� +

4��2asN
m

���2�� ,

�2.1�

where ��r , t� is the macroscopic wave function of the con-
densate normalized so that ����r��2dr=1, N is the total
number of atoms, m is the atomic mass, as is the s-wave
scattering length �below we shall be concerned with attrac-
tive BEC for which as�0�, and

V�x,y,z� =
m

2
��x

2x2 + ��
2 �y2 + z2�� �2.2�

is the axially symmetric trapping potential which provides
for the tight confinement in the transverse plane �y ,z�, as
compared to loose axial trapping, assuming �x

2 /��
2 �1. The

condensate trapped in such a potential acquires a highly
elongated form.

When the transverse confinement is strong enough, so that
the transverse oscillation quantum is much greater than the
characteristic mean-field interaction energy

��� � �4��2�as�/m�N���2, �2.3�

the dynamics is effectively one-dimensional. In this case, the
wave function may be factorized as ��x ,y ,z , t�
=��x , t�	�y ,z�, where 	�y ,z�=exp�−�y2+z2� /2a�

2 � /	�a� is
the normalized ground state of the 2D harmonic oscillator in
the transverse direction, with a�=	� /m�� being the corre-
sponding transverse harmonic-oscillator length. Note that, by
estimating the matter-wave density as N ���2
N / ��a�

2 ax�,
the condition �2.3�, which ensures decoupling of the trans-
verse and longitudinal modes of the condensate, can be writ-
ten as N �as � /ax�0.25. On the other hand, the critical num-
ber of atoms for collapse of an attractive BEC in a
cylindrically symmetric trap was given in �18� as Ncr
=
ax / �as�, with 
 a dimensionless constant which depends
on the trap aspect ratio �=�x /��. For �=1/100 it was
found that 
=0.314 �18�, so that the condition for avoiding
collapse N�Ncr �i.e., N �as � /ax�
� is automatically satis-
fied if inequality �2.3� is valid. Inserting the factorized ex-
pression into the 3D GPE �2.1�, and integrating it over the
transverse plane �y ,z�, one derives the effective 1D equation

i �
��

�t
= �−

�2

2m

�2

�x2 +
m

2
�x

2x2 + g1DN���2�� , �2.4�

where we have neglected the zero-point energy of the trans-
verse motion, ���, and defined a coefficient of the 1D non-
linearity, g1D=4��2asm

−1� �	�y ,z��4dydz=2as���. It is
convenient to use normalized units for time and space vari-
ables, introducing transformations t→��t, x→x /a�, and
the rescaled wave function u→	2N �as��,

i
�u

�t
+

1

2

�2u

�x2 − V2x2u + �u�2u = 0, �2.5�

where V2=�x
2 / �2��

2 � is a small parameter characterizing the
strength of the external parabolic potential. In the experiment
of Rice University �17�, a matter-wave soliton train �com-
prising N
10 solitons� of Bose-condensed 7Li atoms �as=
−0.21 nm, m=11.65�10−27 kg� was created. Radial con-
finement was strong, ��
800 Hz, while the axial one had
been as weak as �x
3 Hz. In the experiment �19�, where a
single soliton of 7Li BEC was created, the trap aspect ratio
was smaller: ��
710 Hz, �x
50 Hz. Therefore, V2

10−5–10−3 is in the range of realistic experimental condi-
tions. Below we shall consider also other kinds of weak po-
tentials in the axial direction x, instead of �or combined with�
the parabolic trap in Eq. �2.5�, see �20,21�. Assuming them as
perturbations iR�u�=V�x�u�x , t�, we move them to the right
hand side of the governing equation.

The N-soliton train interactions for the nonlinear
Schrödinger equation �NLS� and its perturbed versions,
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i
�u

�t
+

1

2

�2u

�x2 + �u�2u = iR�u� , �2.6�

started with the pioneering paper �22�, and by now has been
extensively studied �see �7–10,13� and references therein�.
Several other nonlinear evolution equations �NLEE� were
also studied, among them the modified NLS equation
�11,23,25–27�, some higher NLS equations �13�, the
Ablowitz-Ladik system �24�, and others.

Below we concentrate on the perturbed NLS Eq. �2.6�. By
“N-soliton train” we mean a solution of the �perturbed� NLS
fixed up by the initial condition

u�x,t = 0� = �
k=1

N

uk
1s�x,t = 0�, uk

1s�x,t� =
2�ke

i	k

cosh zk
, �2.7�

zk�x,t� = 2�k�x − �k�t��, �k�t� = 2�kt + �k,0, �2.8�

	k�x,t� =
�k

�k
zk + �k�t�, �k�t� = Wkt + �k,0, �2.9�

Each soliton has four parameters: amplitude �k, velocity �k,
center of mass position �k, and phase �k. The adiabatic ap-
proximation uses as a small parameter �0�1 the soliton
overlap which falls off exponentially with the distance be-
tween the solitons. Then the soliton parameters must satisfy
�22�

��k − �0� � �0, ��k − �0� ��0,

��k − �0���k+1,0 − �k,0� � 1, �2.10�

where �0= 1
N�k=1

N �k and �0= 1
N�k=1

N �k are the average ampli-
tude and velocity, respectively. In fact, we have two different
scales,

��k − �0� � �0
1/2, ��k − �0� � �0

1/2,

��k+1,0 − �k,0� � �0
−1.

One can expect that the approximation holds only for such
times t for which the set of 4N parameters of the soliton train
satisfy �2.10�.

Equation �2.6� finds a number of applications to nonlinear
optics and for R�u�0 is integrable via the inverse scattering
transform method �28,29�. The N-soliton train dynamics in
the adiabatic approximation is modeled by a complex gener-
alization of the Toda chain �7,8�,

d2Qj

dt2 = 16�0
2�eQj+1−Qj − eQj−Qj−1�, j = 1, . . . ,N .

�2.11�

The complex-valued Qk are expressed through the soliton
parameters by

Qk�t� = 2i�0�k�t� + 2k ln�2�0� + i�k� − �k�t� − �0� ,

�2.12�

where �0=1/N�k=1
N �k and �0=�0+ i�0. Besides we assume

free-ends conditions, i.e., e−Q0 eQN+1 0.

Note that the N-soliton train is not an N-soliton solution.
The spectral data of the corresponding Lax operator L are
nontrivial also on the continuous spectrum of L. Therefore,
the analytical results from the soliton theory cannot be ap-
plied. Besides, we want to treat solitons moving with equal
velocities and also to account for the effects of possible non-
integrable perturbations R�u�.

The fact �30,31� that the CTC, like the �real� Toda chain
�RTC� �30�, is a completely integrable Hamiltonian system
allows one to analyze analytically the asymptotic behavior of
the N-soliton trains. However, unlike the RTC, the CTC has
a richer variety of dynamical regimes �7,10,32� such as �i�
asymptotically free motion if v j�vk for j�k; this is the only
dynamical regime possible for RTC; �ii� N-s bound state if
v1= ¯ =vN but �k�� j for k� j; �iii� various intermediate
�mixed� regimes, e.g., if v1=v2�¯�vN but �k�� j, for k
� j, then we will have a bound state of the first two solitons
while all the others will be asymptotically free; �iv� singular
and degenerate regimes if two or more of the eigenvalues of
L become equal, e.g., �1=�2¯ and � j��k for 2� j�k.

By �k=vk+ iwk above we have denoted the eigenvalues of
the Lax matrix L in the Lax representation L�= �M ,L� of the
CTC, where

L = �
k=1

N

bkEkk + �
k=1

N−1

ak�Ek,k+1 + Ek+1,k� , �2.13�

where

bk  −
1

2

dQk

d�
=
�k + i�k

2
, ak =

1

2
e�Qk+1−Qk�/2,

and the matrices Ekp are defined by �Ekp�ij =�ki�pj. The eigen-
values �k of L are time-independent and complex-valued
along with the first components �k=z�1

�k� of the normalized
eigenvectors of L,

Lz��k� = �kz�
�k�, �z��k�,z��m�� = �km. �2.14�

The set of ��k=vk+ iwk, �k=�k+ i�k� may be viewed as the
set of action-angle variables of the CTC.

Using the CTC model, one can determine the asymptotic
regime of the N-soliton train. Given the initial parameters
�k�0� ,�k�0� ,�k�0� ,�k�0� of the N-soliton train, one can cal-
culate the matrix elements bk and ak of L at t=0. Then solv-
ing the characteristic equation on L�t=0 one can calculate the
eigenvalues �k to determine the asymptotic regime of the
N-soliton train �7,10�. Another option is to impose on �k a
specific constraint, e.g., that all �k be purely imaginary, i.e.,
all vk=0. This will provide a set of algebraic conditions L�t=0,
and on the initial soliton parameters �k�0� ,�k�0� ,�k�0� ,�k�0�
which characterize the region in the soliton parameter space
responsible for the N-soliton bound states.

III. THE PERTURBED NLS AND PERTURBED CTC
EQUATIONS

We will consider several specific choices R�p��u� of per-
turbations, p=1,2 , . . ., in Eq. �2.6�. In the adiabatic approxi-
mation, the dynamics of the soliton parameters can be deter-
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mined by the system �see �22� for N=2 and �7,10� for N
�2�

d�k

dt
= − 4�0�eQk+1−Qk − eQk−Qk−1� + Mk

�p� + iNk
�p�, �3.1�

d�k

dt
= 2�k + �k

�p�,
d�k

dt
= 2��k

2 + �k
2� + Xk

�p�, �3.2�

where �k=�k+ i�k and Xk
�p�=2�k�k

�p�+Dk
�p�. The right hand

sides of Eqs. �3.1� and �3.2� are determined by Rk
�p��u�

through

Nk
�p� =

1

2
�

−�

� dzk

cosh zk
Re�Rk

�p��u�e−i	k� , �3.3�

Mk
�p� =

1

2
�

−�

� dzksinh zk

cosh2 zk
Im�Rk

�p��u�e−i	k� , �3.4�

�k
�p� =

1

4�k
2�

−�

� dzkzk

cosh zk
Re�Rk

�p��u�e−i	k� , �3.5�

Dk
�p� =

1

2�k
�

−�

� dzk�1 − zktanh zk�
cosh zk

Im�Rk
�p��u�e−i	k� .

�3.6�

Inserting Eqs. �3.1� and �3.2� into Eq. �2.12�, we derive

dQk

dt
= − 4�0�k +

2k

�0
N0

�p� + 2i�k�M0
�p�

+ iN0
�p�� + i�2�0�k

�p� − Xk
�p� − X0

�p�� , �3.7�

N0
�p� =

1

N
�
j=1

N

Nj
�p�, M0

�p� =
1

N
�
j=1

N

Mj
�p�,

X0
�p� =

1

N
�
j=1

N

Xj
�p�.

In deriving Eq. �3.7� we have kept terms of the order
��k�O�	0� and neglected terms of the order O�0�. The
perturbations may result in �0 and �0 becoming time-
dependent. Indeed, from Eq. �3.1� we get

d�0

dt
= M0

�p�,
d�0

dt
= N0

�p�. �3.8�

The small parameter 0 can be related to the initial dis-
tance r0= ��2−�1�t=0 between the two solitons. Assuming
�1,2��0, we find

0 = �
−�

�

dx�u1
1s�x,0�u2

1s�x,0�� � 8�0r0e−2�0r0. �3.9�

In particular, Eq. �3.9� means that 0�0.01 for r0�8 and
�0=1/2.

We assume that initially the solitons are ordered in such a
way that �k+1−�k�r0. One can check �8,11� that Nk

�p�

�Mk
�p��exp�−2�0 �k− p �r0�. Therefore, the interaction terms

between the kth and �k±1�st solitons will be of the order of
e−2�0r0; the interactions between the kth and �k±2�nd soliton
will of the order of e−4�0r0�e−2�0r0.

The terms �k
�0�, Xk

�0� are of the order of r0
aexp�−2�0r0�,

where a=0 or 1. However, they can be neglected as com-
pared to �̃k and �̃k, where

�̃k = �k − �0 � 	0, �̃k = �k − �0 � 	0. �3.10�

The corrections to Nk
�p� , p=1,2 , . . ., coming from the

terms linear in u depend only on the parameters of the kth
soliton, i.e., they are “local” in k. The nonlinear terms in u
present in iR�p��u� produce also “nonlocal” in k terms in
Nk

�p� , p=1,2 , . . . .

A. Quadratic and tilted potentials

Let iR�u�=V�x�u�x , t�. Our first choice for V�x� is a qua-
dratic one,

V�1��x� = V2x2 + V1x + V0. �3.11�

From the above analysis, we get the results

Nk
�1� = 0, �k

�1� = 0, �3.12a�

Mk
�1� = − V2�k −

V1

2
, �3.12b�

Dk
�1� = V2� �2

48�k
2 − �k

2� − V1�k − V0, �3.12c�

and Xk
�1�=Dk

�1�. As a result, the corresponding PCTC takes the
form �13�

d�k

dt
= − 4�0�eQk+1−Qk − eQk−Qk−1� − V2�k −

V1

2
, �3.13�

dQk

dt
= − 4�0��k + i�k� − iDk

�1� −
i

N
�
j=1

N

Dj
�1�, �3.14�

where �k=�k+ i�k.
If we now differentiate Eq. �3.14� and make use of Eq.

�3.13�, we get �13�

d2Qk

dt2 = 16�0
2�eQk+1−Qk − eQk−Qk−1� + 4�0�V2�k +

V1

2
� − i

dDk
�1�

dt

−
i

N
�
j=1

N
dDj

�1�

dt
. �3.15�

It is reasonable to assume that V2�O�0 /N�; this ensures
the possibility to have the N-soliton train “inside” the poten-
tial. It also means that both the exponential terms and the
correction terms Mk

�1� are of the same order of magnitude.
From Eqs. �3.13� and �3.14� it follows that d�0 /dt=0 and
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d�0

dt
= − V2�0 −

V1

2
,

d�0

dt
= 2�0, �3.16�

where �0 is the average velocity and �0= 1
N� j=1

N � j is the cen-
ter of mass of the N-soliton train. The system of Eqs. �3.16�
for V2�0 has a simple solution

�0�t� = �00cos���t�� ,

�0�t� =	 2

V2
�00sin���t�� −

V1

2V2
, �3.17�

where ��t�=	2V2t+�0, and �00 and �0 are constants of
integration. Therefore, the overall effect of such a quadratic
potential will be to induce a slow periodic motion of the train
as a whole.

By tilted potential below we mean a particular case of the
quadratic potential with V2=0. Then Eqs. �3.16� and �3.17�
take the form

d�̃0

dt
= −

V1

2
,

d�̃0

dt
= 2�̃0, �3.18�

and have the simple solution

�̃0�t� = −
V1

2
t + �̃00,

�̃0�t� = −
V1

4
t2 + �̃00t + �̃00. �3.19�

Therefore, the tilted potential accelerates the soliton train as
a whole in a prescribed direction. It can be used also to “pick
up” and accelerate one or more of the solitons from the train
confined to a periodic potential.

B. Periodic potentials

One may consider several physically important choices of
periodic potentials. The simplest one is

V�2��x� = A1cos��1x + �0� = A1 − 2A1sin2��1x/2 + �0/2� ,

�3.20�

where A, �, and �0 are appropriately chosen constants. The
NLS equation with similar potentials appears in a natural
way in the study of Bose-Einstein condensates, see �20�.

The relevant integrals for Nk, Mk, �k, and Dk are equal to
�13�

Nk
�2� = 0, �k

�2� = 0, �3.21�

Mk
�2� =

�A1�1
2

8�k

1

sinh Zk
sin��1�k + �0� , �3.22�

Dk
�2� = −

�2A1�1
2

16�k
2

cosh Zk

sinh2 Zk
cos��1�k + �0� , �3.23�

where Z1,k=��1 / �4�k�. These results allow one to derive the
corresponding perturbed CTC models. Again we find that
d�0 /dt=0.

The second case we will consider is a linear combination
of two potentials of the form �3.20� with correlated frequen-
cies,

V�3��x� = A1cos��1x + �0� + A2cos��2x + �0� ,

�3.24�

where Aj, � j, and �0 are appropriately chosen constants.
Such potentials with rationally related frequencies, e.g., �2
=2�1, also appear in the study of Bose-Einstein condensates,
see �20�.

The relevant integrals for Nk, Mk, �k, and Dk are equal to
�13�

Nk
�3� = 0, �k

�3� = 0, �3.25�

Mk
�3� = A1Mk��1,Z1,k�sin��1�k + �0�

+ A2Mk��2,Z2,k�sin��2�k + �0� , �3.26�

Dk
�3� = A1Dk��1,Z1,k�cos��1�k + �0�

+ A2Dk��2,Z2,k�cos��2�k + �0� , �3.27�

where

Mk�� j,Zj,k� =
�� j

2

8�k

1

sinh Zj,k
,

Dk�� j,Zj,k� = −
�2� j

2

16�k
2

cosh Zj,k

sinh2 Zj,k
, �3.28�

Zj,k=�� j / �4�k�. These results allow one to derive the corre-
sponding perturbed CTC models. Again we find that
d�0 /dt=0.

The last case we consider is an elliptic potential of the
form

V�4��x� = − Bsn2��x;k� = − B�
s=0

�

Gs�k�sin��sx� ,

�3.29�

Gs�k� = �1 + k2

2k3 −
�2s + 1�2�2

8k3K2 � �

K sinh��s�
, �3.30�

�s =
�2s + 1��

2K
�, �s =

�2s + 1��K�

2K
, �3.31�

where k is the module of the elliptic function, K=K�k� is the
complete elliptic integral of the first kind, and B is a con-
stant.

The second line of formula �3.29� provides the expansion
of sn2��x ;k� as infinite series of trigonometric functions.
Each of the terms in this series can be treated as a perturba-
tion just like above assuming �0=−� /2. As a result, we get

Nk
�4� = 0, �k

�4� = 0, �3.32�

Mk
�4� = B�

s=0

�

Mk��s,Zs,k�Gs�k�cos��s�k� , �3.33�
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Dk
�4� = − B�

s=0

�

Dk��s,Zs,k�Gs�k�sin��s�k� , �3.34�

where Mk, Dk, and �s= �2s+1�� are defined as in Eq. �3.28�.

IV. CTC ANALYSIS AND COMPARISON WITH
NUMERICAL SIMULATIONS

The dynamics of an individual soliton in a train is deter-
mined by the combined action of external potential and the
influence of neighboring solitons. The interaction with neigh-
boring solitons can be either repulsive or attractive, depend-
ing on the phase relations between them. Particularly, if their
amplitudes are equal and the initial phase difference between
neighboring solitons is � �as considered below�, they repel
each other giving rise to expanding motion in the absence of
an external field �7,8�.

The external potential counterbalances the expansion, try-
ing to confine solitons in the minima of the potential. It is the
interplay of these two factors, the interaction of solitons and
the action of the external potential, which gives rise to a rich
dynamics of the N-soliton train.

To verify the adequacy of the perturbed CTC model for
the description of the N-soliton train dynamics in external
potentials, we performed a comparison of predictions of the
corresponding perturbed CTC �PCTC� system and direct
simulations of the underlying NLS equation �2.6�. Below we
present results pertaining to a matter-wave soliton train in a
confining �i� parabolic trap and �ii� a periodic potential mod-
eling an optical lattice.

Here we present the numerical verification of the PCTC
model. The perturbed NLS Eq. �2.6� is solved by the opera-
tor splitting procedure using the fast Fourier transform �33�.
In the course of time, we monitor the conservation of the
norm and energy of the N-soliton train. The corresponding
PCTC equations are solved by the Runge-Kutta scheme with
the adaptive step-size control �34�.

The evolution of an N-soliton train in the absence of po-
tential �V�x�=0� is well known; see, e.g., �8,10�. These pa-
pers propose a method to determine the asymptotic dynami-
cal regime of the CTC for a given set of initial parameters
�k�0�, �k�0�, �k�0�, and �k�0�. Below we will use mainly the
following set of parameters: �k�0�=1/2, �k�0�=0, �k+1�0�
−�k�0�=r0, with two different choices for the phases,

�k�0� = k� , �4.1�

�k�0� = 0. �4.2�

These two types of initial conditions �IC� are most widely
used in numeric simulations.

In the absence of potential, the IC �4.1� ensure the so
called free asymptotic regime, i.e., each soliton develops its
own velocity and the distance between the neighboring soli-
tons increases linearly in time. At the same time, the center
of mass of the soliton train stays at rest �see the upper panel
of Fig. 1�. Under the IC �4.2�, the solitons attract each other
going into collisions whenever the distance between them is
not large enough.

FIG. 1. Upper panel: nine-soliton train with initial parameters as
in Eq. �4.1� with r0=8 in the absence of a potential goes into the
free asymptotic regime. Solid lines: direct numerical simulation of
the NLS equation �2.6�; dashed lines: �k�t� as predicted by the CTC
equations �4.3�–�4.6� with V0=V1=V2=0 and r0=8. Lower panel:
Evolution of a nine-soliton train with the same initial parameters in
the quadratic potential V�x�=V2x2 with V2=0.00005. Solid lines:
direct numerical simulation of the NLS equation �2.6�; dashed lines:
solution of the PCTC equations �4.3�–�4.6�. Initially the train is
placed symmetrically relative to the minimum of the potential at
x=0.
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From a mathematical point of view, the IC �4.1� reduce
the CTC into a standard �real� Toda chain for which the free
asymptotic regime is the only possible asymptotical regime.
On the contrary, the IC �4.2� lead to singular solutions for the
CTC �see �7,10,32��. The singularities of the exact solutions
for the CTC coincide with the positions of the collisions.

Below we will study the effects of the potentials for both
types of IC. One may expect that the quadratic potential will
prevent a free asymptotic regime of IC �4.1� no matter how
small V2�0 is and would not be able to prevent collisions in
the case of IC �4.2�. The periodic potential, if strong enough,
should be able to stabilize and bring to bound states both
types of IC.

A. Quadratic potential

For the quadratic external potential V�x�=V2x2+V1x+V0,
the perturbed CTC equations in terms of soliton parameters
have the form

d�k

dt
= 16�0

3�e−2�0��k+1−�k�cos �k − e−2�0��k−�k−1�cos �k−1�

− V2�k −
V1

2
, �4.3�

d�k

dt
= 16�0

3�e−2�0��k+1−�k�sin �k − e−2�0��k−�k−1�sin �k−1� ,

�4.4�

d�k

dt
= 2�k, �4.5�

d�k

dt
= 2��k

2 + �k
2� + V2� �2

48�k
2 − �k

2� − V1�k − V0, �4.6�

�k = 2�0��k+1 − �k� + �k − �k+1, �4.7�

where �k, �k, �k and �k for k=1, . . . ,N are the 4N soliton
parameters; see Eqs. �2.7� and �2.8�.

The effect of the quadratic potential on the N-soliton train
with parameters �4.1� is to balance the repulsive interaction
between the solitons, so that they remain bounded by the
potential, as illustrated in the lower panels of Figs. 1 and 2.
The quadratic potentials are supposed to be weak, i.e., we
choose V2 so that

V2�N
2 �0� � �0, V2�1

2�0� � �0. �4.8�

Figures 1 and 2 show good agreement between the PCTC
model and the numerical solution of the perturbed NLS
equation �2.6�. They also show two types of effects of the
quadratic potential on the motion of the N-soliton train: �i�
the train performs contracting and expanding oscillations if
its center of mass coincides with the minimum of the poten-
tial, �ii� the train oscillates around the minimum of the po-
tential as a whole if its center of mass is shifted. In the last
case, contracting and expanding motions of the soliton train
is superimposed to the center of mass dynamics. As one can

see from the figures, the period of this motion matches very
well the one predicted by formula �3.17�. Indeed, from Eq.
�3.17� it follows that the period of the center of mass motion
is T=2� /	2V2. For the parameters in Fig. 2 we have T
�628 �for a nine-soliton train�, T�140 �for a three-soliton
train�. The dynamics are similar for the seven-soliton train in
Fig. 3; for the parameters chosen there, we have T�314, in
good agreement with the numerical simulations. The direct
simulations of the NLS equation �2.6� show that a stronger
parabolic trap may cause merging of individual solitons at

FIG. 2. Harmonic oscillations of an N-soliton train initially
shifted relative to the minimum of the quadratic potential V�x�
=V2x2. Upper panel: nine-soliton train, V2=0.00005. Lower panel:
three-soliton train, V2=0.001. The IC of both trains is given by Eq.
�4.1� with r0=8. In both panels, solid lines correspond to direct
simulations of the NLS equation �2.6�, and dashed lines to numeri-
cal solution of the PCTC equations �4.3�–�4.6�.
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times of contraction, and restoring of the original configura-
tion when the train is expanded. This behavior is reminiscent
of the phenomenon of “missing solitons” observed in the
experiment �17�. However, this situation is beyond the valid-
ity of the PCTC approach.

B. Tilted periodic potential

Now we consider the dynamics of an N-soliton train in a
tilted periodic potential, which is the combination of periodic
and linear potentials,

V�x� = A cos��x + �0� + Bx . �4.9�

This potential is of particular interest in studies of Bloch
oscillations of Bose-Einstein condensates. A train of repul-
sive BEC loaded in such a potential �where the periodic po-
tential was a 1D optical lattice and the linear one was due to
the gravitation� exhibits, indeed, Bloch oscillations �35�. At
each period of these oscillations, condensate atoms residing
in individual optical lattice cells coherently tunneled through
the potential barriers. This was the first experimental demon-
stration of a pulsed atomic laser �35�. Recently, a new model
of a pulsed atomic laser was theoretically developed in �36�,
where the solitons of attractive BEC were considered as car-
riers of coherent atomic pulses.

Controlled manipulation with matter-wave solitons is an
important issue in these applications. Below we demonstrate
that solitons of attractive BEC confined in an optical lattice
can be flexibly manipulated by adjustment of the strength of
the linear potential. In Fig. 4, we show the extraction of a
different number of solitons from the five-soliton train by
increasing the strength of the linear potential B, as obtained

from direct simulations of the NLS equation �1� and numeri-
cal integration of the PCTC system �38�-�41� with

Mk
�2� =

�A�2

8�k

1

sinh Zk
sin���k + �0� −

1

2
B , �4.10�

Dk
�2� = −

�2A�2

16�k
2

cosh Zk

sinh2 Zk
cos���k + �0� − B�k. �4.11�

As is evident from Fig. 4, the PCTC model provides an
adequate description of the dynamics of an N-soliton train in
a tilted periodic potential. A small divergence between pre-
dictions for the trajectory of the left border soliton in Fig.
4�d� is due to the imperfect absorption of solitons from the
right end of the integration domain. Reflected waves enter
the integration domain and interact with solitons, which
causes the discrepancy.

C. Periodic potential

Another external potential in which the N-soliton train
exhibits interesting dynamics is the periodic potential of the
form V�x�=A cos��x+�0�. This case also may have a direct
relevance to matter-wave soliton trains confined to optical
lattices. The PCTC system in terms of soliton parameters has
the form

d�k

dt
= 16�0

3�e−2�0��k+1−�k�cos �k − e−2�0��k−�k−1�cos �k−1�

+ Mk
�2���k� , �4.12�

d�k

dt
= 16�0

3�e−2�0��k+1−�k�sin �k − e−2�0��k−�k−1�sin �k−1� ,

�4.13�

d�k

dt
= 2�k, �4.14�

d�k

dt
= 2��k

2 + �k
2� + Dk

�2���k� , �4.15�

where Mk
�2���k�, Dk

�2���k� are given in Eqs. �3.21� and �3.23�,
and �k in Eq. �4.7�.

Each soliton of the train experiences the confining force
of the periodic potential and the repulsive force of neighbor-
ing solitons. Therefore, equilibrium positions of solitons do
not coincide with the minima of the periodic potential. Soli-
tons placed initially at minima of the periodic potential �Fig.
5� perform small amplitude oscillations around these
minima, provided that the strength of the potential is big
enough to keep solitons confined. In contrast, the weak peri-
odic potential is unable to confine solitons, and repulsive
forces between neighboring solitons �at phase difference ��
induces unbounded expansion of the train. In the intermedi-
ate region, when the confining force of the periodic potential
is comparable with the repulsive forces of neighboring soli-
tons, interesting dynamics can be observed such as the ex-

FIG. 3. Dynamics of a seven-soliton train placed asymmetrically
relative to the minimum of the trap V�x�=0.0002x2. Solid lines:
results of direct numerical simulations of the NLS equation �2.6�.
Dashed lines: result of solution of the PCTC system �4.3�–�4.6� for
the center of mass �i. The parameters of solitons are the same as in
Eq. �4.1� with r0=8. The initial shift of the soliton train relative to
the minimum of the parabolic trap is 10�.
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pulsion of bordering solitons from the train, as shown in the
upper panel of Fig. 6. This phenomenon, revealing the com-
plexity of the internal dynamics of the train, can be explained
as follows. Each soliton performs nonlinear oscillations
within individual potential wells under repulsive forces from
neighboring solitons. When the amplitude of oscillations of
particular solitons grows and two solitons closely approach

each other, a strong recoil momentum can cause the soliton
to leave the train, overcoming barriers of the periodic poten-
tial. In Fig. 6, this happens with bordering solitons �the other
solitons remain bounded under long time evolution�. It is
noteworthy to stress that this phenomenon is well described
by the PCTC model, as is evident from Fig. 6, upper panel.

On the lower panel of the same figure, we have similar IC
as in Eq. �4.1� and we have chosen again the initial positions
of the solitons to coincide with the minima of the periodic
potential V�x�=A cos��x+�0�, i.e., r0=2� /�. The values of
A=−0.0005 and r0=9 in the right panel of Fig. 6 now are
such that the solitons form a bound state. Therefore, for any
given initial distance r0 there is a critical value Acr�r0� for A
such that for A�Acr�r0� the soliton train with IC �4.1� will
form a bound state.

In contrast to the quadratic potentials, the weak periodic
potential is unable to confine solitons, and repulsive forces
between neighboring solitons �at �k�0�=1/2, �k�0�=k�� in-
duce unbounded expansion of the train similar to what was
shown in the upper panel of Fig. 1.

The periodic potential can play a stabilizing role also for
the IC �4.2�, when the zero phase difference between neigh-
boring solitons corresponds to their mutual attraction. If the
periodic potential is strong enough, solitons do not experi-

FIG. 4. Controlled withdrawal of solitons
from the five-soliton train by adjusting the
strength of the linear potential �4.9� with param-
eters: A=−0.0005, �=2� /9, �0=0. Depending
on the tilt, a different number of solitons can be
pulled out of the train: �a� one soliton at B=
−0.00003, �b� two at B=−0.00011, �c� four at B
=−0.0002, and �d� five at B=−0.0003. The initial
phase difference and separation between neigh-
boring solitons in the train are, respectively, �
and 9. Initially the train is shifted by −10� with
respect to x=0 for graphical convenience. Solid
and dashed lines correspond, respectively, to di-
rect simulations of the NLS equation �2.6� and
numerical integration of the PCTC system
�4.12�–�4.15�.

FIG. 5. Solitons �continuous line� remain confined around the
minima of the periodic potential V�x�=A cos�x� �dashed line� per-
forming small amplitude oscillations if its strength is big enough,
A=−0.1.
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ence collision. The weak periodic potential cannot prevent
solitons from collisions, which eventually leads to destruc-
tion of the soliton train, as illustrated in Fig. 7. Again for any
given initial distance r0 there will be a critical value Acr� �r0�
for A such that for A�Acr� �r0� the soliton train with IC �4.2�
will form a bound state avoiding collisions.

Attractive interactions at zero phase difference between
neighboring solitons can be balanced by expulsive force on
solitons, if the train is positioned on an inverted parabolic
trap. In this case, solitons far from the center experience

stronger expulsive force and leave the train, as illustrated in
Fig. 8.

V. HAMILTONIAN APPROACH TO PERTURBED NLS
AND CTC

The Hamiltonian method has played an important role in
the analysis of integrable and close to integrable nonlinear
evolution equations and dynamical systems; see �29�. In this
section, we will outline how this method can be used for the
analysis of the N-soliton interactions.

The relation between the Hamiltonian properties of the
NLS equation and the CTC model was derived in �37�. Here

FIG. 6. Upper panel: The expulsion of solitons from the train, as
obtained from direct simulations of the NLS equation �2.6� �solid
lines�, and as predicted by PCTC system �4.12�–�4.15� for the cen-
ter of mass �i �dashed lines�. The IC of the seven-soliton train are
given by Eq. �4.1� with r0=8; the parameters of the periodic poten-
tial V�x�=A cos��x+�0� are A=−0.001, �=� /4, �0=0. Lower
panel: Oscillations of the five-soliton train with IC given by Eq.
�4.1� with r0=9; in a moderately weak periodic potential, A=
−0.0005, �=2� /9, �0=0. Solid and dashed lines correspond, re-
spectively, to numerical solution of the NLS Eq. �2.6� and PCTC
system �4.12�–�4.15�.

FIG. 7. Dynamics of a five-soliton train with zero phase differ-
ence between neighboring solitons, in the periodic potential V�x�
=A cos��x+�0� with �=� /4, �0=0, and r0=8. Upper panel:
When the periodic potential is strong enough A=−0.02, the
N-soliton train remain confined, each soliton performing small am-
plitude oscillations around the minima of individual cells. Lower
panel: Weaker periodic potential A=−0.01 cannot prevent solitons
from collisions, which destroy the train. Solid and dashed lines
correspond, respectively, to numerical solution of the NLS Eq. �2.6�
and PCTC system �4.12�–�4.15�.
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we will show that this approach can be extended also to the
perturbed versions of NLS and CTC. Indeed, the Hamil-
tonian of Eq. �2.6� with iR�u�=V�x�u�x , t� is equal to

H = HNLS + HV, �5.1�

HNLS = �
−�

�

dx
1

2
��ux�2 − �u�x,t��4� , �5.2�

HV = �
−�

�

dxV�x��u�x,t��2. �5.3�

One of the ways to derive the CTC from the NLS is based
on the use of the variational method �9,38�. Namely, one
constructs the Lagrangian of NLS, then takes an anzatz of
the form

u�x,t� = �
k=1

N

uk
�1s��x,t� , �5.4�

and integrates over x neglecting terms of order k with k
�1. Here uk

�1s��x , t� is the one-soliton pulse with parameters
�k, �k, �k, and �k. The results must depend only on the
4N-soliton parameters. It was pointed out in �37� that if we
apply this method directly to the Hamiltonian HNLS, we get
additional singular in  elements which are taken care of by
a proper regularization. The regularized Hamiltonian is

Hreg = 4��0
2 + �0

2�C1 − 4�0C2 + HNLS,

C1 = �
−�

�

dx�u�x,t��2,

C2 = �
−�

�

dx
i

2
�ux

*u�x,t� − u*�x,t�ux� . �5.5�

Then one can show that

Hreg = 32�0HCTC + const, �5.6�

where HCTC is the Hamiltonian of the CTC. It is obtained
from the Toda chain Hamiltonian,

HTC = �
k=1

N
1

2
pk

2 + �
k=1

N−1

eqk+1−qk, �5.7�

by a complexification procedure after which the dynamical
variables become complex-valued,

pk → Pk = p0,k + ip1,k, qk → Qk = q0,k + iq1,k, �5.8�

which must satisfy the Poisson brackets,

�p0,k,q0,s� = �ks, �p1,k,q1,s� = − �ks, �5.9�

�p0,k,q1,s� = 0, �p1,k,q0,s� = 0. �5.10�

Then the CTC can be written down as a standard Hamil-
tonian system with 2N degrees of freedom and Hamiltonian
provided by the real part of the complexified HTC,

HCTC = �
k=1

N
1

2
�p0,k

2 − p1,k
2 � + 16�0

2�
k=1

N−1

eq0,k+1−q0,k

�cos�q1,k+1 − q1,k� , �5.11�

p0,k =
dq0,k

dt
= − 4�0�k, p1,k =

dq1,k

dt
= − 4�0�k.

�5.12�

It remains to replace q0,k and q1,k in terms of the soliton
parameters in order to get the final expression for HCTC.

Let us now derive the Hamiltonian for the perturbed CTC.
To this end we will evaluate HV in terms of the soliton pa-
rameters. Inserting the anzatz �5.4� into the integrand for HV
we obtain two types of terms. The first type is

HV = �
k=1

N

Hk + �
k=1

N

�Hk,k−1 + Hk,k+1� , �5.13�

Hk = �
−�

�

dxV�x��uk
�1s��x,t��2, �5.14�

Hk,k−1 = �
−�

�

dxV�x��uk
�1s�,*uk−1

�1s���x,t� .

In what follows, we will neglect the terms Hk,k−1 as com-
pared to Hk, because their ratio is of the order of . The
integrals in Eq. �5.14� for the quadratic and periodic poten-
tials have the form

Hk = 4�k��V2�k
2 −

�2

48�k
2� + V1�k + V0�

+
�A�

sinh Zk
cos���k + �0� . �5.15�

One can also evaluate the Poisson brackets between the
soliton parameters inserting the expressions for p�,k and q ,s

FIG. 8. Stabilization of a soliton train in a combined potential
�periodic+inverted parabola�: V�x�=−0.02 cos��x�−0.000145x2.
Separation between in-phase ��k=0� solitons is r0=9, �=2� /9.
Bordering solitons leave the train as they experience stronger ex-
pulsion, while the central ones remain bounded.
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with � , =0,1 into Eq. �5.9�. We skip the lengthy calcula-
tions here and only note that these Poisson brackets com-
bined with the Hamiltonian

HPCTC = HCTC + �
k=1

N

Hk �5.16�

=HCM + HV, �5.17�

indeed produce the equations of motion for the PCTC.
Our next step is to separate the center of mass motion

described by HCM,

HCM = N�8�0
2��0

2 − �0
2� + 4�0�V2�0

2 + V1�0 + V0�

−
�A�

sinh���
4�0

� cos���0 + �0�� , �5.18�

where the subscript 0 stands for the average value of the
corresponding parameter, e.g., �0=1/N�k=1

N �k. Then the
Hamiltonian HV would describe the relative motion of the
solitons. We will express it as a function of the averaged
parameters �0 , . . . ,�0 and the relative parameters,

�̃k = �k − �0, �̃k = �k − �0,

�̃k = �k − �0, �̃ = �k − �0. �5.19�

Note that only N−1 of the relative parameters are indepen-

dent; obviously they satisfy �k=1
N X̃k=0, where X̃k stands for

�̃k , . . . , �̃k.
In evaluating HV we will neglect higher-order terms, i.e.,

terms of the order 3/2 and higher, as well as terms of the
order Vs

1/2, A1/2, and higher. As a result, HCM and HV
simplify to

HCM = 8�0
2��0

2 − �0
2� + 4�0�V2�0

2 + V1�0 + V0 −
V2�

2

48�0
2 �

+
�A�

sinh Z0
cos���0 + �0� , �5.20�

HV = 8�0
2�

k=1

N

��̃k
2 − �̃k

2 + H̃k� + 16�0
2�

k=1

N−1

eq0,k+1−q0,k cos�q1,k+1

− q1,k� , �5.21�

H̃k = 4�0V2��k − �0�2 +
�A�

sinh Z0
�cos���k + �0�

− cos���0 + �0�� . �5.22�

The Hamiltonian HCM which describes the center of mass
motion is more simple than HV and often one is able to solve
explicitly the corresponding equations of motion, see Sec.
IV. The next step would be, using the known expressions for
the averaged variables �0�t� , . . . ,�0�t�, to insert them into HV

and try to analyze the corresponding equations of motion.
This would provide us with information about the relative
motion of the solitons around the center of mass. Usually we
get a set of nonlinear and nonintegrable ODE.

Our idea here is to use the explicit form of HV for the
estimation of the critical values of potential strengths A, V2,
V1 for which the soliton motion becomes qualitatively differ-
ent. Doing this we are making use of the following hypoth-
esis based on the well known fact that bound states have
negative energies while asymptotically free motions should
correspond to positive energies. Therefore, we evaluate the
Hamiltonian HV inserting in it the initial soliton parameters
along with the known expressions for �0 , . . . ,�0. If the result
is negative, we may expect that the relative motion of the
solitons will be bounded; otherwise one may expect that at
least one �or more� of the solitons will move away from the
others. The critical value of the corresponding constants will
be derived below with the condition HV=0.

Assume we have only periodic potential present and the
initial soliton configuration is Eq. �4.1�. For A=0 the solitons
will go into an asymptotically free regime. Switching on the
self-consistent periodic potentials �such that the solitons ini-
tially are located at its minima�, it is natural to expect that for
A�Acr the solitons will be stabilized into a bound state.
Then from the condition HV=0 we get

Acr = − �1 −
1

N
�64�0

4

��
e−2�0r0sinh

��

4�0
. �5.23�

Note that the critical values generically should depend not
only on the number of solitons N, but also on the initial
configuration. The approach we used is not very sensitive to
this. It cannot provide us with the intermediary critical val-
ues when the soliton train is stabilized after emitting two or
more solitons.

We compared the theoretical predictions for Acr from Eq.
�5.23� with the data coming from the numeric solutions of
the corresponding PCTC for different choices of the initial
distance between the solitons r0. The results are collected in
Table I. The conclusion is that Eq. �5.23� provides correct
dependence of Acr on r0 up to an overall constant factor of
the order of 1.5.

In Table II we summarize two sets of critical values for
the five-soliton trains. From our numeric experiment we de-
rive two critical values of A. The first one, Acr

5,exp, describes
the value of A above which all five solitons form a bound
state; the second one, Acr

3,exp, shows the value of A above
which the three middle solitons form a bound state while the
two end ones separate.

TABLE I. The values of Acr
exp obtained from numeric simulations

with PCTC versus Acr
th obtained from Eq. �5.23� for N=3.

r0 Acr
exp Acr

th Acr
exp/Acr

th

2� −0.0053 −0.00365 1.45

7 −0.0025 −0.00166 1.51

8 −0.00084 −0.00057 1.47

9 −0.00030 −0.00020 1.50
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Again we see that formula �5.23� describes correctly the
dependence of both critical values on r0.

VI. CONCLUSIONS

We have studied the dynamics of an N-soliton train con-
fined to external fields �quadratic, periodic, and tilted poten-
tials�. Both the analytical treatment in the framework of the
PCTC model and numerical analysis by direct simulations of
the underlying NLS equation show that the PCTC is ad-
equate for description of the adiabatic N-soliton interactions
in weak external potentials. A Hamiltonian approach for the
perturbed NLS and CTC has been developed, and applied to
the analysis of the soliton “expulsion” from the train, which
is confined to a periodic potential.

As a physical system of direct relevance, we have consid-
ered matter-wave soliton trains in magnetic traps and optical
lattices. In the range of parameters for the trapping potential,
used in the BEC soliton train experiments, we found a good
agreement between the analytical estimates based on the
PCTC model and numerical simulations of the governing
NLS equation. In what concerns the critical strength of the
periodic potential at which the soliton expulsion occurs, ana-
lytical predictions qualitatively agree with numerical simula-
tions. The developed theory can be useful for controlled ma-
nipulation with matter-wave soliton trains.
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